IDENTIFICACIÓN DE LA UNIDAD DE APRENDIZAJE

Unidad académica: Instituto de Investigación en Ciencias Básicas y Aplicadas.			
Plan de estudios: Licenciatura en Física y Matemáticas			
Unidad de aprendizaje: Física moderna	Ciclo de formación: Profesional Eje general de formación: Teórico-técnica Área de conocimiento: Física avanzada Semestre: 5°		
Elaborada por: Dr. Alejandro Ramírez Solís	Fecha de elaboración: Marzo, 2021		

Clave:	Horas teóricas	Horas prácticas:	Horas totales	Créditos:	Tipo de unidad de aprendizaje	Carácter de la unidad de aprendizaje:	Modalidad:
OPP25CP050010	5	0	5	10	Optativa	Teórica	Escolarizada

Programa Educativo en el que se imparte: Licenciatura en Física y Matemáticas del Instituto de Investigación en Ciencias Básicas y Aplicadas.

ESTRUCTURA DE LA UNIDAD DE APRENDIZAJE

Presentación: En esta unidad de aprendizaje se abordarán, estudiarán y analizarán la serie de fenómenos y experimentos que produjeron cambios en los paradigmas de las teorías de la Física. El cambio en las perspectivas de la Física dadas las limitaciones de las teorías clásicas para poder explicar los fenómenos que serán presentados aquí. Se pretende cubrir la mayor cantidad del contenido resaltando los conceptos más importantes.

Propósito: Distinga y analice los conceptos básicos de la teoría cuántica y de la estructura de la materia, al termino de la unidad de aprendizaje, mediante el estudio de la transición entre el uso de la Física Clásica, la serie de fenómenos físicos y experimentos que dieron lugar a la formulación de la mecánica cuántica, identificación, planteamiento y resolución de problemas, para describir diversos fenómenos con compromiso, ética y responsabilidad.

Competencias que contribuyen al perfil de egreso.

Competencias genéricas:

- CG1. Capacidad para el aprendizaje de forma autónoma.
- CG4. Capacidad de abstracción, análisis y síntesis.
- CG9. Capacidad de comunicación oral y escrita.
- CG20. Conocimiento sobre el área de estudio y la profesión.
- CG22. Participación con responsabilidad social.
- CG33. Compromiso ético.

Competencias específicas:

- CE1. Plantea y analiza problemas físicos, tanto teóricos como experimentales, utilizando métodos analíticos, experimentales o numéricos, para encontrar soluciones e interpretarlas en sus contextos originales con eficiencia, funcionalidad y creatividad.
- CE 4. Aplica competencias, conocimientos y habilidades en Física y Matemáticas, mediante la solución innovadora a problemas planteados en el sector público, privado o social, con la finalidad de fortalecer el desarrollo científico y tecnológico del país, con actitudes y valores que les permitan ser agentes de cambio.
- CE 5. Posee conocimientos, habilidades, valores y actitudes requeridos en investigación inter y multidisciplinaria de las ciencias básicas y aplicadas, mediante el análisis, intercambio y producción de información entre grupos

académicos de diferentes campos disciplinares que involucren a la física y la matemática, para contribuir científicamente en equipos de investigación con un sentido de trabajo colaborativo y profesional.

CE 7. Comunica asertivamente conceptos, objetivos, métodos y resultados del lenguaje científico, mediante la comunicación oral y escrita, para presentar propuestas y proyectos de manera eficaz, funcional y aplicable.

CONTENIDOS

Bloques:	Temas:
I. Relatividad Especial.	1.1 Experimento de Michelson-Morley.
·	1.2 Los experimentos del pensamiento de
	Einstein
	1.3 Relatividad especial, dilatación del tiempo,
	contracción del espacio
	1.4 Transformaciones de Lorentz
	1.5 Paradoja de los gemelos
	1.6 Equivalencia masa-energía
	1.7 La desintegración del mesón
	1.8 Suma de velocidades relativistas
II. Naturaleza corpuscular de la luz.	2.1 El efecto fotoeléctrico
·	2.2 La teoría cuántica de la luz
	2.3 Rayos X y difracción de Rayos X
	2.4 Efecto Compton
	2.5 Creación de materia: producción de pares
	2.6 Corrimiento gravitacional hacia el rojo
	2.7 Lentes gravitacionales
III. Propiedades ondulatorias de las partículas.	3.1 Las ondas de De Broglie
	3.2 El experimento de Davisson-Germer
	3.3 La función de onda
	3.4 Velocidades de onda de Broglie
	3.5 Velocidades de fase y de grupo
	3.6 Difracción de ondas de materia
	3.7 Principio de incertidumbre
	3.8 Experimento de la doble rendija
	3.9 La dualidad onda-partícula
IV. El átomo.	4.1 Estructura del átomo: la escala atómica vs. la escala nuclear
	4.2 Dispersión de partículas alfa y el
	experimento de Rutherford
	4.3 Órbitas electrónicas, ondas de De Broglie y
	dimensiones nucleares.
	4.4 Espectros atómicos
	4.5 El átomo de Bohr y los niveles de energía
	4.6 Espectros del átomo de hidrógeno, líneas
	espectrales y transiciones atómicas
	4.7 Transiciones electrónicas, potenciales de
	ionización y electroafinidad
	4.8 Principio de Correspondencia de Bohr
V. Mecánica cuántica.	5.1 Introducción a la mecánica cuántica
	5.2 La ecuación de onda de Schrödinger
	dependiente del tiempo

VI. La teoría cuántica del átomo de hidrógeno.	 5.3 Valores esperados de observables físicas 5.4 La ecuación de onda de Schrödinger independiente del tiempo 5.5 Partícula en una caja: cuantización de la energía y funciones propias 5.6 El oscilador armónico, espectro y funciones propias 5.7 El significado de la Energía de Punto Cero 6.1 Ec. Schrödinger para el átomo de hidrógeno: separación de variables 6.2 Solución de las ecuaciones radial y angular para estados ligados 6.3 Los números cuánticos principal, orbital y azimutal 6.4 Explicación de las series de Balmer, Paschen, Bracket y Pfund 6.5 Transiciones radiativas y reglas de selección 6.6 El efecto Zeeman
VII. Átomos complejos.	7.1 El spin del electrón: experimento de Stern-Gerlach 7.2 Acoplamiento spin-órbita 7.3 Principio de exclusión de Pauli 7.4 Configuraciones electrónicas 7.5 El sistema periódico y la Regla de Hund 7.6 El momento angular total 7.7 Acoplamiento LS 7.8 Acomplamiento JJ 7.9 Transiciones radiativas:UV-visible y produccion de rayos-X 7.10 El átomo de helio y estados excitados
VIII. Introducción a moléculas. IX. Mecánica estadística.	 8.1 Porqué son mas estables las moléculas que los átomos 8.2 Electrones en edificio multinuclear: quién domina el hamiltoniano 8.3 Orbitales moleculares a partir de orbitales atómicos 8.4 Orbitales híbridos: el caso del carbono y el diamante 8.5 Enlaces carbono-carbono 8.6 Niveles de energía de carozo y de valencia 9.1 Leyes de distribución estadística
X. El estado sólido.	9.2 El espacio fase 9.3 La distribución de Maxwell-Boltzman 9.4 Energías moleculares en un gas ideal 9.5 Espectros rotacionales 9.6 Distribución de Bose-Einstein 9.7 Radiación de cuerpo negro 9.8 Distribución de Fermi-Dirac 9.9 El láser 10.1 Sólidos amorfos y sólidos cristalinos
74 El Cocado Solidor	10.2 Cristales iónicos

	10.3 Cristales covalentes
	10.4 Fuerza de van der Waals
	10.5 El enlace metálico
	10.6 La teoría de bandas
	10.7 El nivel de Fermi
	10.8 Distribución de energías electrónicas
	10.9 La zona de Brillouin
	10.10 Las bandas prohibidas
	10.11 Modos vibracionales de cristales: los
	fonones
XI. El núcleo atómico.	11.1 Masas atómicas
	11.2 El neutrón y la evolución de A vs. Z en la tabla periódica
	11.3 Tamaños y formas nucleares
	11.4 Núcleos estables vs. inestables: los
	isótopos
	11.5 Desintegración y decaimiento radioactivo.
	11.6 Niveles y energías nucleares.
	11.7 El deuterón: estado singulete vs. el
	triplete
	11.8 El modelo de gota líquida
	11.9 El modelo de capas
	11.10 Reacciones nucleares y nucleosíntesis
XII. Partículas elementales.	12.1 El modelo estándar de la materia
	12.2 Cómo se explican las 206 partículas que
	existen
	12.3 Hadrones, mesones, leptones y neutrinos
	12.4 El papel del spin, materia y partículas
	mediadoras de las fuerzas: fermiones y
	bosones.
	12.5 Los quarks: mesones y el modelo de
	confinamiento
	12.6 Cuantización de la carga 2/3 y 1/3
	12.7 Energía de amarre y la masa en reposo de
	las partículas elementales

ESTRATEGIAS DE ENSEÑANZA - APRENDIZAJE

Estrategias de aprendizaje sugeridas (Marque X)			
Aprendizaje basado en problemas	(X)	Nemotecnia	()
Estudios de caso	()	Análisis de textos	(X)
Trabajo colaborativo	()	Seminarios	()
Plenaria	()	Debate	()
Ensayo	()	Taller	()
Mapas conceptuales	()	Ponencia científica	()
Diseño de proyectos	()	Elaboración de síntesis	()
Mapa mental	()	Monografía	()
Práctica reflexiva	()	Reporte de lectura	(X)
Trípticos	()	Exposición oral	(X)
Otros			
Estrategias de enseñanza sugeridas (Marque X)			

Presentación oral (conferencia o exposición) por	(X)	Experimentación (prácticas)	()
	(^)	Experimentation (practicas)	()
parte del profesorado			
Debate o Panel	()	Trabajos de investigación documental	(X)
Lectura comentada	(X)	Anteproyectos de investigación	()
Seminario de investigación	()	Discusión guiada	()
Estudio de Casos	()	Organizadores gráficos	()
		(Diagramas, etc.)	
Foro	()	Actividad focal	()
Demostraciones	()	Analogías	()
Ejercicios prácticos (series de problemas)	()	Método de proyectos	()
Interacción la realidad (a través de videos,	(X)	Actividades generadoras de información	()
fotografías, dibujos y software especialmente		previa	
diseñado).			
Organizadores previos	()	Exploración de la web	(X)
Archivo	()	Portafolio de evidencias	()
Ambiente virtual (foros, chat, correos, ligas a otros	()	Enunciado de objetivo o intenciones	()
sitios web, otros)		-	
Otra, especifique (lluvia de ideas, mesa redonda,	textos	programados, cine, teatro, juego de roles,	experiencia
estructurada, diario reflexivo, entre otras):			

,

CRITERIOS DE EVALUACIÓN

Criterios sugeridos	Porcentaje		
Exámenes parciales	30%		
Examen final	40%		
 Participación en clase 	10%		
Tareas	20%		
Nota: Algunos de los instrumentos de evaluación que se pueden	considerar son: Rúbricas, escalas de cotejo,		
escala estimativa, entre otros.			
Total	100 %		

PERFIL DEL PROFESORADO

Preferentemente con nivel Doctorado en Física, Matemáticas o área afín a la disciplina de la unidad de aprendizaje, que asegure un dominio integral de los saberes en su campo, es deseable que cuente con experiencia docente y en la generación y aplicación del conocimiento como ejercicio de su profesión.

REFERENCIAS

Básicas:

- Beiser, A. (2003) Concepts of Modern Physics. 6th edition. McGraw-Hill.
- Greene, B. (2010) The Elegant Universe. W. W. Norton & Company.
- Blatt F. (1992) Modern Physics. USA: McGraw-Hill.
- D'Inverno R. (1992) Introducing Einstein's Relativity. Oxford University Press.

Complementarias:

- Gasiorowicz S. (1979) The structure of Matter: a Survey of Modern Physics. Addison-Wesley.
- Hacyan S. (1999) Relatividad Especial para Estudiantes de Física. Fondo de Cultura Económica.
- Eisberg R, Resnick R. (1978) Física Cuántica. México: Limusa.

